MMATH FINAL EXAMINATION ALGEBRAIC GEOMETRY

Attempt all questions. Assume that the base field k, in all questions below, is algebraically closed. Total: 50 marks. Time: 3 hours.
(1) Prove that up to projective equivalence, there is only one irreducible projective plane cubic curve with a node: $F(x, y, z)=x^{3}+y^{3}-x y z$. (8 marks)
(2) Let W be the set of all conics in \mathbb{P}^{2}. Show that W can be identified with \mathbb{P}^{5}. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four distinct points of \mathbb{P}^{2}, and let V be the subset of all conics in \mathbb{P}^{2} passing through these four points. Show that V is a linear subspace (defined by homogenous linear equations) of $W\left(=\mathbb{P}^{5}\right)$. Show that $\operatorname{dim}(V)=2$ if these four points lie on a line, and $\operatorname{dim}(V)=1$ otherwise. (8 marks)
(3) Let C_{1}, C_{2} be two irreducible projective curves, let f be a non-constant rational map from C_{1} to C_{2}. Prove that f is dominating (or dominant), and $k\left(C_{1}\right)$ is a finite field extension of $f^{*}\left(k\left(C_{2}\right)\right)$. Here $f^{*}: k\left(C_{2}\right) \rightarrow k\left(C_{1}\right)$ is the induced map on function fields. (8 marks)
(4) Show that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} are birationally equivalent but not isomorphic. (8 marks)
(5) Let C be an irreducible projective plane curve and let P_{1}, \ldots, P_{n} be simple points on C. Let m_{1}, \ldots, m_{n} be arbitrary integers. Show that there exists a rational function $z \in k(C)$ such that $\operatorname{ord}_{P_{i}}(z)=m_{i}$ for $i=1, \ldots, n$ (note there are no conditions on the points other than P_{1}, \ldots, P_{n}, that is, z may have other zeroes). (9 marks)
(6) Let $C \subset \mathbb{P}_{k}^{2}$ be a nonsingular projective plane cubic curve. Let L be a line in \mathbb{P}_{k}^{2} which intersects C in three distinct points. Show that if two of these points are flexes on C, then so is the third point. (9 marks)

